Events

Remarks on chaos in classical and quantum mechanics

Aalto Quantum Physics Seminars (Hybrid). Prof. Angelo Vulpiani (Sapienza University of Rome)

AQP seminars_standard

Abstract: 

It is easy to show that 

                                                                                   ||δψ(t)|| = ||δψ(0)||

 where ||( )|| denotes the L2 norm. Therefore it is tempting to conclude chaos cannot exist in quantum world, and this seems to be a consequence of the linear structure of the equation ruling the evolution law. Let us stress that although classical mechanics is typically described by nonlinear equations, it is formally analogous to quantum mechanics in many respects. Indeed, the Liouville equation of classical mechanics affords a linear theory for the evolution of probabilities, at the cost of switching from a finite dimensional phase space to an infinitely dimensional function space, analogously to the quantum mechanics based on the Schrodinger equation. I discuss how the presence of classical chaos has nontrivial impact of the behavior of quantum systems; in particular for: 

a) the classical limit as emergent property, 

b) the relevance of the coarse-graining description 

References:

Berry, M.V. Chaos and the Semiclassical Limit of Quantum Mechanics is the Moon There When Somebody Looks? In: Russell, R.J., Clayton, P., Wegter-McNelly, K., Polkinghorne, J. (eds.) Quantum Mechanics: Scientific Perspectives on Divine Action, pp. 41. Vatican Observatory CTNS Publications, (2001) 

Crisanti, A., Falcioni, M., Mantica, G., Vulpiani, A. Applying algorithmic complexity to define chaos in the motion of complex systems. Phys. Rev. E 50, 1959 (1994) 

Falcioni, M., Vulpiani, A., Mantica, G., Pigolotti, S. Coarse-grained probabilistic automata mimicking chaotic systems Phys. Rev. Lett. 91, 44101 1 (2003)

Ford, J., Mantica, G., Ristow, G.H The Arnold cat: failure of the correspondence principle Physica D 50, 493 (1991) 

Mantica, G. Quantum algorithmic integrability: The metaphor of classical polygonal billiards Phys.Rev. E 61, 6434 (2000) 

Vega, J. L., Uzer, T. and Ford, J. Chaotic billiards with neutral boundaries Phys. Rev. E 48, 3414 (1983) 

Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical Rev. Mod. Phys. 75, 715 (2003)

  • Published:
  • Updated: